• 《社交媒体环境下基于多维度情感分析的电影票房收入预测研究》
  • 作者:吕孝忠著
  • 单位:合肥工业大学
  • 论文名称 社交媒体环境下基于多维度情感分析的电影票房收入预测研究
    作者 吕孝忠著
    学科 管理科学与工程. 社交媒体挖掘
    学位授予单位 合肥工业大学
    导师 蒋翠清指导
    出版年份 2019
    中文摘要 电影的票房收入是其商业成功的最直接指标。对电影票房收入进行预测可以指导制片商制作电影以及帮助发行商和放映商制定营销计划和排片计划,达到最大化电影票房收入,降低风险的目的。但是以往的票房收入预测模型在预测精度上还存在较大的提升空间。随着Web2.0的普及应用,社交媒体上存在大量关于电影的在线口碑,观影者往往会受到这些信息的影响而改变观影计划。近年来,利用社交媒体数据来预测票房收入已成为一个研究热点。 虽然使用社交媒体数据使票房收入的预测精度得到了提高,但是“要相关不要因果”思维的过度应用,使得预测模型的鲁棒性得不到保证。因此,从在线口碑信息中抽取与票房收入有因果关系的电影维度信息,分析影响关系以指导新电影的制作,并构建鲁棒性和精度更好的票房收入预测模型就变得十分必要。 论文研究内容和成果主要包括: (1)以多属性态度理论为依据,构建了多维度情感分析框架,研究电影在线口碑中的维度情感挖掘与分析问题。基于该框架挖掘出在线口碑中消费者感知的电影的三个重要维度:影星、情节和流派,发现在电影上映期间观众对三个维度的情感及其演化规律存在显著差异。 (2)采用动态面板数据模型和系统矩估计方法,研究三个重要维度的情感对电影票房收入的影响问题。研究结果表明不是在线口碑中包含的所有情感都能影响票房收入,情感对票房收入的影响因维度和极性的不同而不同,同时三个重要维度的情感对票房收入的影响受到制作预算和各自维度情感方差的调节。影星维度的正面情感正面影响高预算电影的票房收入,影星维度的负面情感正面影响低预算电影的票房收入。而情节维度的正面(负面)情感正面(负面)影响低预算电影的票房收入。影星维度的情感方差负面调节影星维度情感的正面效应。 (3)使用多元线性自回归和神经网络算法,提出自回归维度情感模型和正负维度情感模型,研究每日票房收入和首周票房收入的预测问题。研究发现构建的模型在电影上映的初期预测精度更高。实验结果证实多维度情感分析框架抽取的维度情感可以提高票房收入预测模型的精度和鲁棒性。 关键词:社交媒体;票房收入预测;情感分析;主题模型;回归算法
    英文摘要 The box-office revenue is the most direct indicator of the commercial success of a film. Box-office revenue prediction can guide movie producers to adjust productions of films and help distributors and exhibitors make marketing plans and release plans, so as to maximize box-office revenues and reduce risks. However, there is still much room for improvement in the accuracy of previous box-office revenue prediction models. With the popularity of Web2.0, a large amount of electronic word-of-mouth (eWOM) about movies has been accumulated on various social media, and moviegoers are often influenced by eWOM to change their movie-watching plans. Therefore, using social media data to predict box-office revenue has become a research hotspot. Although the usage of eWOM has greatly improved the accuracy of box-office revenue prediction, the over-application of the mindset of “be correlated, not causal” makes the robustness of prediction models not guaranteed. Therefore, it is necessary to extract the film dimension information that has a causal relationship with box-office revenue from the eWOM, analyze the influence relationship to guide the production of new films and build a more robust and accurate prediction model for box-office revenue. The research work and contributions of this dissertation mainly include: (1)Based on the multi-attribute attitude theory, Multidimensional Sentiment Analysis (MDSA) framework is constructed to study dimension sentiment mining and analysis in film eWOM. The three important dimensions of film perceived by consumers in eWOM, namely movie star, plot and genre, are extracted, and it is found that there are significant differences in the evolution rules of audiences' sentiments in the three dimensions during the release of films. (2)Dynamic panel data model and system generalized method of moments estimation method are used to study the influence of dimension sentiment on film box-office revenue. The results of empirical study show that not all sentiments contained in eWOM can affect box-office revenues, and the influence of sentiment on box-office revenues varies with different dimensions and polarities. Meanwhile, the influence of dimension sentiment on sales is moderated by production budget and variance of dimension sentiment. The positive sentiments of star dimension positively affect the box-office revenues of high-budget films, while the negative sentiments of star dimension positively affect the box-office revenues of low-budget films. The positive (negative) sentiments of plot dimension positively (negatively) influence the box-office revenues of low-budget films. The sentiment variance of star dimension negatively moderates the positive effects of star dimension sentiments. (3)Using multivariate linear autoregressive algorithm and neural network algorithm, this paper proposes autogressive dimension sentiment model and positive-negative dimension sentiment model to study the prediction of daily box-office revenues and open-week box-office revenues. It is found that the prediction accuracy of the proposed model is higher at the initial stage of film release. The results also proved that the dimension sentiment extracted by the MDSA framework can improve the accuracy and robustness of the box-office revenue forecasting model. KEYWORDS: social media; box-office revenue forecasting; sentiment analysis; topic model; regression algorithm
    鸥维数据云查询平台
      联系我们
    • 电话:400-139-8015
    • 微信:vbeiyou
    • 邮箱:ovo@qudong.com
    • 总部:北京市海淀区学院路30号科群大厦西楼5层
    Copyright © 西北大学西部大数据研究院旗下“鸥维数据” 京ICP备17065155号-6